Hilbert’s 6th Problem: Exact and Approximate Hydrodynamic Manifolds for Kinetic Equations
نویسندگان
چکیده
The problem of the derivation of hydrodynamics from the Boltzmann equation and related dissipative systems is formulated as the problem of a slow invariant manifold in the space of distributions. We review a few instances where such hydrodynamic manifolds were found analytically both as the result of summation of the Chapman–Enskog asymptotic expansion and by the direct solution of the invariance equation. These model cases, comprising Grad’s moment systems, both linear and nonlinear, are studied in depth in order to gain understanding of what can be expected for the Boltzmann equation. Particularly, the dispersive dominance and saturation of dissipation rate of the exact hydrodynamics in the short-wave limit and the viscosity modification at high divergence of the flow velocity are indicated as severe obstacles to the resolution of Hilbert’s 6th Problem. Furthermore, we review the derivation of the approximate hydrodynamic manifold for the Boltzmann equation using Newton’s iteration and avoiding smallness parameters, and compare this to the exact solutions. Additionally, we discuss the problem of projection of the Boltzmann equation onto the approximate hydrodynamic invariant manifold using entropy concepts. Finally, a set of hypotheses is put forward where we describe open questions and set a horizon for what can be derived exactly or proven about the hydrodynamic manifolds for the Boltzmann equation in the future.
منابع مشابه
A Mathematical Pde Perspective on the Chapman–enskog Expansion
This paper presents in a synthetic way some recent advances on hydrodynamic limits of the Boltzmann equation. It aims at bringing a new light to these results by placing them in the more general framework of asymptotic expansions of Chapman–Enskog type, and by discussing especially the issues of regularity and truncation. The present article is one of two companion papers on the Chapman–Enskog ...
متن کاملFrom Boltzmann to Euler: Hilbert’s 6 Problem Revisited
This article addresses the hydrodynamic limit of the Boltzmann equation to the compressible Euler equations of gas dynamics. An exact summation of the Chapman–Enskog expansion originally given by A. Gorban and I. Karlin is the key to the analysis. An appraisal of the role of viscosity and capillarity in the limiting process is then given where the analogy is drawn to the limit of the Korteweg –...
متن کاملHigh Accuracy Relative Motion of Spacecraft Using Linearized Time-Varying J2-Perturbed Terms
This paper presents a set of linearized equations was derived for the motion, relative to an elliptical reference orbit, of an object influenced by J2 perturbation terms. Approximate solution for simulations was used to compare these equations and the linearized keplerian equations to the exact equations. The inclusion of the linearized perturbations in the derived equations increased the high ...
متن کاملKinetic equation for a soliton gas, its hydrodynamic reductions and symmetries
We study a new class of kinetic equations describing nonequilibrium macroscopic dynamics of soliton gases with elastic collisions. These equations represent nonlinear integro-differential systems and have a novel structure, which we investigate by studying in detail the class of N -component ‘cold-gas’ hydrodynamic reductions. We prove that these reductions represent integrable linearly degener...
متن کاملA Successive Numerical Scheme for Some Classes of Volterra-Fredholm Integral Equations
In this paper, a reliable iterative approach, for solving a wide range of linear and nonlinear Volterra-Fredholm integral equations is established. First the approach considers a discretized form of the integral terms where considering some conditions on the kernel of the integral equation it is proved that solution of the discretized form converges to the exact solution of the problem. Then th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013